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Abstract

The protein folding problem involves the prediction of the secondary and tetiary

structure of a molecular system given the primary structure. The primary structure defines

the sequence of amino-acid residues, while the secondary structure describes the local 3-

dimensional arrangement of amino-acid residues within the molecule. The relative

orientation of the secondary structural motifs, namely the tertiary structure, defines the

shape of the entire biomolecule. The exact mechanism by which such a sequence of amino

acids (protein) folds into its 3-dimensional conformation is unknown. Current approaches

to the protein folding problem include calculus-bas methods, systematic search, model

building and symbolic methods, random methods such as Monte Carlo simulation and

simulated annealing, distance geometry, and molecular dynamics.

Many of these current approaches search for confbrmations which minimize the

potential energy of the molecule. Calculus-based techniques include steepest descent,

conjugate-gradient, and Newton-Raphson methods to minimize a classical energy flnction

of a molecular structure. The performance of calculus-based search, however, is

susceptible to the many local minima which exist in such energy functions. Systematic

search operates by enumerating all possible discretized conformations for a specified

number of degrees of freedom. The exponential order of this technique makes it

impractical for larger molecules where the number of degrees of freedom can range from a

few hundred to thousands. Model building and symbolic approaches employ manual

interaction to define and manipulate the initial 3-dimensional structure of a molecule and

then a local optimization technique to refine it. Monte Carlo simulation and simulated

annealing are stochastic semi-optimization techniques used to sample the search space for

the lowest energy conformations. Distance geometry methods use an iterative process of
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constraint satisfaction to reduce the upper and lower bounds of inter atomic distances

within the molecule. The resulting tighter constraints allow a local minimization technique

to find the final conformation. A genetic algorithm (GA), a stochastic search technique

modeled after natural adaptive systems, potentially offers significant speedup over other

search algorithms because of its inherent parallelizability.

The protein folding problem is represented in a GA as a population of strings

which encode a possible conformation of the molecule being minimized. The GA uses an

empirical calculation of the internal energy of the molecule as a fitness function to

determine which population members survive into the next generation. Many parallel

implementations of traditional search techniques distribute the calculation of the energy

function across the processors which requires communication of the results to determine

the overall energy. This workload distribution strategy often limits the scalability of the

algorithm due to the fixed problem size of the energy function. However, a parallel GA

can distribute the population members evenly across the processors. Each processor

calculates the internal energy (fitness) of each of its population members independent of

the other processors. Only minimal communications between processors is necessary in

order to manage the overall population.

The results of applying a GA to the protein folding problem show significant

improvement in execution time when compared to serial implementations of the GA. In

addition, the parallel GA demonstrates good scalability characteristics since the

communications strategy used to manage the population can be tailored to the parallel

architecture.
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GENETIC ALGORITHMS AND THEIR APPLICATION

TO THE

PROTEIN FOLDING PROBLEM

I. Introduction

As computers become faster and faster, the size of problems which are tackled

using computers become larger and more complex. Computers of today are able to work

with large amounts of data, manipulate this data, and solve difficult problems using

sophisticated algorithms. Computer designers have, however, begun to approach the

physical limitations of electronic components, effectively bounding the computational

speed of single processors used to solve complex problems (DeCegama, 1989). Recently,

designs for high performance computers have tended toward multiple processor systems.

The goal of this new type of architecture is to have multiple processors working in parallel

to speedup the overall throughput of the system. Ideally, the effect is a machine with an

overall performance capability directly proportional to the sum of the performance of the

processors which make up the system. However, the full potential speedup offered by

parallel architectures is often never realized, primarily because it is difficult to

simultaneously keep all processors busy doing useful work. Some overhead is associated

with communications between processors which results in a drain on the performance of

parallel architectures. To take advantage of the speedup offered by parallel architectures,

algorithms must be designed to perform actions simultaneously, and with certain level of

independence. Only when the algorithm is able to divide the workload up evenly among



all the processors, with minimal interprocessor dependencies, is the system able to achieve

close to maximum performance.

However, even with the order of magnitude increases in hardware performance,

there remain problems whose solution with ordinary algorithmic approaches remain

unsolvable within a reasonable amount of time. These intractable problems grow

exponentially, resulting in execution times on the order of years or centuries, even with the

fastest hardware available. One such problem of international interest is called the protein

folding problem.

The typical solution to solving intractable problems in a finite amount of time is to

relax the solution constraint to accept near optimal or semi-optimal solutions rather than

the guaranteed globally optimal solution (Cormen, 1990). Many search-based algorithms

are available which provide good approximations to the global solution and offer

reasonable execution times (Goldberg, 1989). However, these algorithms do not

necessarily always yield good results. Often, they are problem specific and are

consequently deceived by application problems outside of their intended problem domain.

Characteristics which can be used to evaluate algorithms include speed of

execution, robustness of applications, and quality of solutions. To avoid unreasonable

execution times, for problems of even moderate size, the order of complexity of the

algorithm must not exceed low degree polynomial order. Often, exponential order

programs are used despite the long execution times, simply because there is no currently

available algorithm which can guarantee better results in less time. The limitation on this

approach requires the user to be constantly aware of the algorithm's time complexity to

avoid problem sizes which result in unacceptable execution times. This limitation often

leads the user to ask, "What is a moderate size problem?" To help understand the impact

of an exponentially increasing function, consider the following example. A computer

capable of evaluating 10 trillion solutions per second would only be able to enumerate the
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search space of a 2r exponential problem up to a size of n = 55 before the execution time

exceeds an hour. Solving the same problem for a size of n = 60 would take more than a

day of constant execution, and for a problem of size n = 70, the computer would have to

be left running for close to four years. It becomes obvious that for problems of relatively

moderate size, a complete enumerative type algorithm is not a feasible option for solving

exponential order problems. Consequently, advances in hardware alone will never achieve

the desired speeds necessary to solve complex problems of large size, without

corresponding improvements in algorithms.

1.1 Semi-Optimal Algorithms

A good algorithm should be designed not only to be of polynomial order, but

should also be applicable to a variety of problems. A robust algorithm would allow a

computer user to apply one algorithm to any of a variety of problems, and achieve good

results. Algorithms tailored to specific problems usually have good or even excellent

performance within their limited problem domain. However, these problem specific

algorithms typically have poor performance outside of their intended application (Pearl,

1984). Consequently, computer science journals are filled with algorithms which have

been shown to perform well for specific well defined tasks. Unfortunately, there is

essentially a void of algorithms which offer acceptable performance across a wide

spectrum of applications. Specifically tailored algorithms obtain their higher performance

in terms of speed and solution quality by making use of previous knowledge of the

problem domain to guide the search in the most efficient manner.

The quality of a solution is an important factor to semi-optimal search algorithms

since by their nature, they do not enumerate the entire search space. Therefore, they can

not guarantee the solution which was found is the globally optimal solution. Complete

enumeration algorithms guarantee the globally optimal solution, but at the cost of
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exploring, either explicitly or implicitly, the entire search space (Brassard, 1988). For

exponential or combinatoric problems, exploring every element in the search space is

simply not possible within a reasonable amount of time. The only alternative is to apply

some strategy to limit the search space to a reasonable size which can then be explored.

1.2 Genetic Algorithms

Thus, it is desirable for an algorithm to be of polynomial time complexity,

applicable to a wide variety of problems, achieve optimal or near optimal results, and also

run efficiently on parallel machines. Genetic algorithms are a relatively new type of

algorithm which have shown strong potential for meeting these objectives (Goldberg,

1989). Genetic algorithms are search based semi-optimization algorithms which are

similar in some respects to random search based algorithms. The important difference,

however, is genetic algorithms use a stochastic sampling procedure which results in a

more directed search strategy than a purely random search. Genetic algorithms are of

polynomial time complexity, and have been shown to achieve good results in a variety of

applications. Modeled after the natural evolution process of selection, mating, and

mutation, genetic algorithms simulate the Darwin theory of survival of the fittest. The

search space is represented by a population of strings upon which genetic operators act to

create new generations of strings. Starting with an initial population, the genetic

operators use information about the fitness of the old population to create a new and

better population with each successive generation. The solution to the problem

corresponds to the string representation which possesses the highest fitness after an

appropriate number of evolutionary cycles. Since populations can be easily divided into

sub-populations, genetic algorithms are also inherently parallelizable.

As an example, of how a genetic algorithm could be used as a function optimizer,

consider the following function, known as Rosenbrock's Saddle. The function is
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characterized by a non-linear, non-convex shape which is difficult to optimize using a

simple hill-climbing type algorithm.

f(x,y)=lOO(x2 -y) 2 -(1-x) 2

In order to apply the genetic algorithm, the search space must be parameterized

and encoded as a string. Consider a domain of the function from -2.00 to 2.00 with a

desired resolution of 0.01 for each variable. This would require the search space to be

discretized to at least 400 individual points per variable. Using a binary representation, an

encoding of 9 bits is sufficient to represent 512 individual points. Therefore, the genetic

string can be represented by a sequence of 18 binary characters, where the first half of the

string represents the domain of variable x and the second half of the string represents the

domain ofy. Now, any point (x, y) can be represented in the genetic algorithm as a single

14 digit binary string, where the values of x and y are equal to the range of x and y times

the quotient of the integer representation of the genetic string divided by the integer range

of the genetic string minus the zero offset. For example, the values of x and y in Figure 1

are represented by the binary equivalent of 358 (256 + 64 + 32 + 4 + 2) and 234 (128 + 64

+ 32 + 8 + 2). The corresponding real values are found by multiplying 4.0 (the range of x

and y) by the quotient of 358 and 234 respectively, divided by 512, and then subtracting

2.0 for the zero offset.

The second step is to implement the means to evaluate the fitness of each member

String Representation of the domain of f(x,y)

111011111010111]10101 1110111011101

x=4(358/512)-2=0.80 y=4(23 4/51 2)-2=-0.17

Figure 1. Example Encoding for a Genetic Algorithm String



of a population of strings which represent candidate solutions to the function being

optimized. Assuming the function can be evaluated, the fitness value of each population

member is simply the value of the function evaluated at the point (x, y) represented by the

binary string. Through the searching action of the genetic algorithm, the population of

strings evolves to conform to better and better solutions, eventually finding the optimal or

near optimal solution to the function.

Despite all the advantages offered by genetic algorithms, they do have some

limitations which lead to performance shortfalls when compared to more traditional search

algorithms. Three primary deficiencies of genetic algorithms are premature convergence

on local optima, lack of a stopping condition, and low precision (Eshelman, 1993; Palmer,

1991; Reynolds, 1990). These deficiencies are addressed in more detail in the literature

review.

1.3 An Introduction to the Protein Folding Problem

The protein folding problem has the distinction of being among the national grand

challenge problems. Simply stated, the protein folding problem consists of predicting the

3-dimensional structure of a protein, given the sequence of amino-acids which make up

the protein. The implications of "solving" the protein folding problem are enormous.

Knowing the 3-dimensional structure of a protein would allow biochemists to design new

medicines with very specific properties, thus minimizing negative side effects. Engineers

could use knowledge of the 3-dimensional structure of proteins to develop new materials

designed with unique physical qualities. Finally, the genetic information encoded within

our own DNA molecules may provide the answers to cure disease, birth defects, and other

genetic abnormalities.

Currently, the only reliable methods available to determine the 3-dimensional

structures of proteins is X-ray crystallography and Nuclear Magnetic Resonance (NMR).
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However, both of these procedures require an extensive amount of lab time in order to

determine the structure of one protein. The number of known protein sequences already

outnumbers the number of known protein structures by more than two orders of

magnitude (Lengauer, 1993). Given the current rate of discovery of new proteins, largely

due to the work done in the Human Genome Project (US Congress, 1988), this gap is

expected to continue to widen until a reliable and efficient method is found to accurately

predict the 3-dimensional structure of a protein given the primary sequence of amino-acids

which make up the protein. Even though a prediction algorithm is not as definitive as the

actual determination of a protein's structure through NMR or X-ray crystallography, if it is

able to demonstrate a reasonable level of accuracy at predicting the structures of already

known protein sequences, then there will be a corresponding level of confidence in its

ability to accurately predict the structures of new protein sequences.

The absolute solution to the protein folding problem can be modeled by two

classical approaches (Lengauer, 1993). The first approach uses an ab initdo energy

minimization approach which accounts for all quantum-mechanical effects between atoms

of the molecule; an 0(n3) operation for each conformation. The final conformation

corresponding to the minimum energy state, is then assumed to be the natural

3-dimensional structure of the protein. The problem then becomes, how to efficiently

search the conformational space for the lowest energy structure. A complete enumeration

of the search space is impossible, yet without explicitly or implicitly search the entire

search space, the global minimum structure can not be guaranteed.

The second approach calculates the molecular forces acting on each atom of the

molecule and applies Newtonian laws of motion to predict the trajectories of each atom as

an N-body simulation. The greatest drawback to this approach is the required time steps,

in order to accurately simulate motion at the atomic level, are much too small to be able to

simulate the entire folding of a protein in our life time. Consequently, simplifications or
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approximations necessary in order to increase the size of the time step. If the locations of

each of the atoms near their globally minimum conformation could be approximated, then

each of the classical approaches would be well suited to refine the final conformation.

However, given an unknown sequence of amino-acids for which no structural information

is available, a classical approach to structure prediction becomes intractable for even

moderately sized molecules.

1.4 Parallel vs. Serial Computation

The primary obstacle to scaling to larger problem sizes for complex problems is

the execution time usually exceeds an acceptable level. Several hours or even several day

of computation time, may be an acceptable amount of time depending on the importance

of the application. However, an execution time of several years is generally infeasible

from both a cost perspective as well as a hardware reliability standpoint, no matter how

important the application. As has already been stated, the processing speed of a single

processor is currently approaching the physical limitations of the device. Consequently, a

considerable effort is now being expended on parallelizing existing algorithms in the hopes

of achieving speedup in execution times, thus allowing the algorithm to scale to larger

problem sizes (Chandy, 1989).

Their inherent parallelizability of genetic algorithms is partially responsible for the

increasing popularity. Several models have been developed to map the genetic algorithm

to parallel architectures (Gordon, 1993). The particular model used depends largely on

the type of parallel architecture. For distributed memory MIMD (multiple instruction

multiple data) architectures, an island model usually works the best, where as a cellular

model is considered to be the most appropriate for fine-grained, massively parallel

architectures (Dorigo, 1993; Gordon, 1993).
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1.5 Objective

The objective of this research effort is two fold. The first objective is to

demonstrate that genetic algorithms can be successfully applied to the protein folding

problem. The second objective is to demonstrate the scalability of a parallel

implementation of a genetic algorithm as it is applied to the protein folding problem. The

first objective involves developing an accurate model of the potential energy function of a

molecule and incorporating as the fitness function of the genetic algorithm. The second

objective requires the incorporation of the potential energy function into a parallel

implementation of a genetic algorithm and executing the code on various numbers of

processors to collect speedup information.

1.6 Assumptions

o The available ART software for simple and messy parallel genetic algorithms is

assumed to function properly.

o Already existing performance data, which is used for comparative analysis is

assumed to be obtained from algorithm implementations which have been

optimized for maximum performance.

1.7 Scope

The scope of this project includes designing and implementing the empirical

potential energy function of a molecule. The integration of this energy model as the

fitness function of a sequential and a parallel implementation of a simple genetic algorithm

is also covered. Comparisons are made with results from published studies of a simulated

annealing approach. The problem domain consists of the multi-minima problem of finding

the minimum energy structure of the polypeptide [Met]-Enkephalin. Application results

are analyzed for both serial and parallel implementations of the genetic algorithm.
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1.8 Standards

The following quantifiable measures are used as a minimum to compare the results

of the implementations of the genetic algorithms, as well as results from non-genetic

approaches to similar problems.

"* Number of generations to find global optimum

"* Execution time

"0 Error, difference between global optimum and solution found

"* Space considerations

1.9 Approach/Methodology

1) Study literature pertaining to genetic algorithms, their applications, advantages,

limitations, and current state of performance.

2) Study literature pertaining to the conformational analysis of proteins, including

general background, genetic algorithm approaches, and other current approaches.

3) Comprehend and analyze the genetic algorithm software available.

4) Perform analysis and design of empirical potential energy function.

5) Perform analysis and design of molecular representation scheme to encode the

conformation of a molecule as a binary string.

6) Implement empirical potential energy function, and integrate into existing code for

simple and parallel simple genetic algorithms, using the sequential version of the

genetic %gorithm as a develop nent environment.

7) Implement representation scheme for a molecular conformation.

8) Validate the potentia, .nergy model by comparing calculated energies with those

obtained using the molecular simulation software package called CHARMm.
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9) Test both the simple and parallel simpie genetic algorithms ginst an energy

minimization problem and analyze results to determine the tradeoffs between the

two algorithms.

10) Compare results with published reports for simulated annealing approach and

perform a quantified comparison between the performance of the two approaches.

11) Summarize results and discuss pros and cons of the two algorithms. Discuss the

robustness of the algorithms with respect to the potential for scaling to larger

parallel systems and larger problem sizes.

12) Discuss direction and recommendations fbr future work.

1.10 Materials and Equipment

All development is accomplished on AFIT workstations and the AFIT iPSC/2

Hypercube. Additional insight into the effect of parallelization of the algorithm is gained

by porting the code over to larger systems, including the Intel iPSC/860 Hypercube

computer in Beaverton, Oregon. Running the algorithms on various size machines

provides an opportunity to observe the effects of scaling, and workload balancing of the

algorithms.

1.11 Summary

Computer hardware is fast approaching physical limitations which bound the

amount of computational power available from a mingle processor. Yet, computers are

seen as essential tools to solve many problems of exponential complexity, such as the
protein folding problem. For such problems, a completely guaranteed solution my not be

possible, given their enormous complexity. Consequently, good approximation

algorithms, applicable to a large variety of intractable problems, are necessary in order to

reduce the overall complexity of finding at least a good solution. These algorithms should

also be highly parallelizable in order to take advantage of the full speedup offered by
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parallel processors. Genetic algorithm are viewed as a potentiaDy promising technique

for applications involving exponential order problems.

1.12 Layout of Thesis

This first chapter has already introduced the topics of genetic algorithms, the

protein folding problem, and parallel processing. Chapter 11 is a literature review

containing background information on genetic algorithms, current limitations of them, and

finally, a review of current approaches to paraflelizing genetic algorithms. Chapter []

contains a summary of current approaches to conformational analysis, an analysis of the

potential energy minimization approach to the protein folding problem, as well as a

discussion of encoding schemes to represent the conformationl search space of a protein.

Chapter IV details the experimental design and implementation of the potential energy

finction, the reprementation of the problem, and the integration of the design into the

genetic algorithm. Chapter V provides the results obtained from the genetic algorithm

applied to the conformational analysis of the protein [Met]-Enkephalin. Finally, chapter

VI concludes with some final observations and reommendaons for future related efforts.
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I1. Literature Reew of Gemnc Algoriwus

Although the concept of genetc algoithms is reatvely new (Holland, 1975), there

is a growing foundation of literature devoted to the theory of evolutionary algorithms and

their application to a variety of problem domains. The Eirt international conference on

genetic algorithms was held in 1985, and has since contributed significantly toward the

promotion of evolutionary computation. The proceedings of these conferences provide a

wealth of information perWt g to both theory and application. The foliowing sections

provide a brief review of relevant background information, a discussion of current

imitations, and a summary of vaious approaches to parallelize genetic algorithms.

2.1 Background

The primary distinction between various types of computer-baed search

algorithms is the manner in which the problem space is explored. Traditional search

algorithms can be categorized as either calculus-based, enumerative, or random

(Goldberg, 1989). Calculus-based algorithms seek to either indiectly derive the optimal

solution by solving a set of equations, or directly find the maximum of the function by

moving in the direction of the highest slope. An enumerative algorithm, which is only

suitable for finite domains, simply enumerates or tests every point within the problem

domain. A random search technique is similar to enumeration; however, only random

points within the domain are tested. Genetic algorithms are search based semi-

optimization algorithms which are similar in some respects to random search based

algorithms. The important difference, however, is genetic algorithms use a stochastic

sampling procedure which results in a more directed search strategy than a purely random
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search. Genetic algorithms have been shown to achieve good results in a variety of

applications including combinatorial minimization, such as the traveling salesman problem

(Homaifar, 1993; Jog, 1989), the set covering problem (Sen, 1993), and finctional

optimization (Goldberg, 1987; Janikow, 1990; Muselli, 1992).

2.LI General Desciptn. The basic genetic algorithm consists of at least three

operators-reprodhucton, crossowr, and mutation, modeled after the natural evolutionary

processes of selection, mating, and mutation respectively (Goldberg, 1989; Holland,

1975). Genetic algorithms simulate the Darwin theory of survival of the fittest by

representing the search space as a population of strings upon which genetic operators act

to create new generations of strings. The application domain is encoded as a string

structure representative of chromosomes. Through the application of selection operators

to an initial population of string structures, a new generation is formed called offspring.

Fitness values are calculated for each member of the population by applying a fitness

function to each individual string of the population. The strings with the highest fitness

values will be kept for breeding the next generation. The basic pseudo code for a genetic

algorithm is presented below.

initialize population
calculate fitness for all members of the population
for i - 1 to max numberof_generations

for j = 1 to populationsize
crossover
mutation
evaluate fitness

end loop
reproduction

end loop

Reproduction employs a selection strategy to determine which strings will survive

or be copied over into the next generation. The next generation then is made up of copies

of strings with high fitness values which forms the mating pool for the following

generation. The crossover operator mates a pair of strings by randomly selecting a

14



Mates Children

Ilo1 l0l 0 1 11LL J_1101 1

EIEI1 iW 1011010

L Crossover Point

Figure 2. Example of Single Point Crossover

crossover point along the length of the string and swapping the string sequence from the

crossover point to the end of the string (see Figure 2). The purpose of the crossover

operator is to create new strings using pieces of the strings from the previous generation.

The goal then is to combine the good parts of one string with the good parts of another

string to form a new string which is better than each of the individual parents. The

mutation operator randomly selects a string within the population and alters part of the

string (see Figure 3). Just as in nature, the mutation operator is applied only periodically.

By applying the genetic algorithm operators to an initial population and simulating the

process of natural selection over many generations, a final population of the fittest strings

is formed. The final solution found by the genetic algorithm corresponds to the string

representation which possesses the highest fitness after an appropriate number of

evolutionary cycles.

2.1.2 Complexity Analysis. The genetic algorithm is of polynomial order

complexity with a finite space requirement determined by the population size. Although

Goldberg (1989) suggests that there is an optimal population size which depends upon the

length of the string, there is no fixed dependence between the length of the string and the
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Input Result

Mutation Point

Figure 3. Example of a Mutation

population size. Experimental evidence, however, suggests that an insufficient population

size may adversely affect solution quality (Goldberg, 1989 and Merkle, 1992). The terms

in the order of the genetic algorithm reflect the length of the string as well as the number

of strings in the population. An entire cycle of the genetic algorithm is executed up to a

maximum number of generations specified by the user.

The various genetic operators each have associated minimum complexities,

although the actual complexity depends on the implementation. The crossover operator

selects two strings from the population pool of n strings, picks a random location along

the length of the string of I bits, and then swaps the two tails of the parent strings which

follow the randomly selected crossover point. The number of crossovers per generation is

O(n), and the actual crossover operation can be considered to be 0(/) since it needs to

traverse the length of the string.

The fitness function includes a call to decode the string representation into the

value in the problem domain. This decode call could be an 0(1) or an 0(1) function,

depending upon the string representation scheme and the programming environment

capabilities. Evaluating the fitness function is an 0(1) operation, with respect to the

populations size, since it simply substitutes the decoded string values, and evaluates the

16



objective finction. However, for complex problems, the evaluation of the fitness has a

lower bound of the order of the objective function-the function being optimized.

Mutation also could be an 0(1) or an 0(n) operation depending upon the

particular implementation and also the mutation strategy being used. Studies have shown

good results are obtained with a mutation rate of once for every thousand string position

transfers (Goldberg, 1989).

The selection function has an 0(n) complexity since it must evaluate each member

of the population to determine which strings will be carried on to the next generation.

Actual implementations of the selection operator may be of 0(n 2 ) complexity, such as a

roulette wheel approach biased according to the fitness of the strings.

21.3 Niche Theory. While optimizing over a search space which contains many

near optimal solutions, simple genetic algorithms have been found to be susceptible to

genetic drift (De Jong, 1975; Goldberg & Segrest, 1987). Genetic drift happens when the

stochastic error associated with the genetic operators, in conjunction with competing

schemata corresponding to different peaks within the search space, causes the population

to converge to one of the peaks (Deb, 1989). To overcome this pitfall, several

implementations of genetic algorithms have been developed which attempt to maintain

multiple, stable subpopulations on different peaks within the search space (Deb, 1989;

Goldberg, 1989).

The theoretical foundation for maintaining separate subpopulations is based on the

limited resources model which can be observed among natural organisms. In nature,

organisms rarely compete for the same resource; rather, they coexist while exploiting

different resources within the same environment. The relative size of the population of a

species corresponds to the availability of the resource which it exploits. The balance of

the number of individuals among any one species is maintained by the fact that all

resources are limited; if a resource becomes over utilized, starvation will correct the
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imbalance until an equilibrium is reached. The resulting system produces stable

subpopulations of species which exploit their own region or niche within the overall

environment.

The analogy between natural systems and genetic algorithms demonstrates the

benefits gained by allowing the search space to be explored simultaneously within several

different niches of the search space. The number of population members allocated to each

niche is proportional to the relative fitness of the niche, corresponding to the availability of

the resource. The balance of the number of individuals allocated to the various niches is

maintained throughout the search process in two ways. The relative fitness of one niche

can decline with respect to other niches which prove to yield better solutions, thus causing

a proportionally smaller number of individuals to be allocated to the niche with lesser

performance. The competition for limited resources also affects the probability of survival

of any one individual. If a large portion of the population is exploiting one area of the

search space, the survival rate of any one individual will be proportionally smaller, even

though the area of exploitation may correspond to a niche of high fitness. This

competition for limited resources provides the genetic algorithm with the mechanism to

prevent the population from converging upon one solution.

2..L4 Models and Niche Formation. There are basically two methods for

incorporating a niche strategy in genetic algorithms. The first, proposed by De Jong

(1975), is called the crowding scheme which implements a generalized form of

preselection to determine which population member is replaced by a new offspring. The

idea is to replace an individual with a similar individual of higher fitness, thus preserving

population diversity. Similarity is based on a bit-by-bit comparison of two strings to

determine the number of bits in common. The crowding scheme works by preventing

members of one niche from dominating the members of another niche.
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The second method used to create niches in the search space is called the sharing

scheme (Deb, 1989; Goldberg & Richardson, 1987). The sharing scheme acts as a fitness

scaling factor. The fitness of individuals are scaled according to the number of other

similar individuals which considered to be exploiting the same region or niche within the

search space. In this scheme a distance metric is used to scale the fitness of an individual

such that its expected survival rate is proportional to the number and proximity of

neighboring individuals. Consequently, when a large number of individuals inhabit the

same region of the search space, their corresponding fitness will be reduced, resulting in a

proportionally smaller number of individuals to be allocated to that region of the search

space. Likewise, when an individual of relatively low fitness inhabits a sparsely populated

region of the search space, its fitness will be scaled up, thus increasing it chances of

survival.

The source of the distance metric used in the sharing scheme has lead to two

different implementations. The distance used to quantify the proximity of neighboring

individuals can be determined at either the phenotypic level or the genotypic level. The

phenotypic level refers to the decoded parameter search space. For a problem with n

parameters, the distance is usually calculated as the Euclidean distance between two points

in n-dimensional space. The distance at the genotypic level simply corresponds to the

Hamming distance between two strings of the population.

2.2 Limitations of Genetic Algorithms

Despite all the advantages offered by genetic algorithms, they do have some

limitations which lead to performance shortfalls when compared to more traditional search

algorithms such as A*, hill-climbing, depth-first, or breadth-first search (Rich, 1991).

Three primary deficiencies of genetic algorithms are premature convergence on local

optima, lack of a solution based stopping condition, and low precision. Some of these
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deficiencies may be rectifiable through the use of dynamically self-adjusting genetic

algorithms (Aizawa, 1993; Davis, 1989; Lee, 1993).

Currently there are implementations of genetic algorithms which incorporate, at

least to some degree, a dynamic factor to adjust one or more of the evolutionary features

of the genetic algorithm as the population evolves. The following sections focus on

current implementations of genetic algorithms which incorporate a dynamic element within

their genetic operators in order to adapt the search strategy to overcome obstacles during

various stages of the evolutionary search process.

2.21 Premature Convergence. Premature convergence happens when a search

through a search space becomes trapped in a locally optimal solution state and is unable to

locate the globally optimal solution. This problem is particularly important for

applications where many local minima exist, such that finding the globally optimal

minimum becomes exceedingly difficult without exploring the entire search space.

Although other algorithms are just as susceptible to this phenomenon, it may be possible

to avoid premature convergence with genetic algorithms by modifying the way in which

locally optimal states are explored.

In order for genetic algorithms to gain wider acceptance as a valid and reliable

approach to solving real-world problems, efforts must be made to reduce the likelihood of

premature convergence, and to increase the level of precision. The properties and

characteristics of genetic algorithms are still not fully understood. Consequently, the exact

causes of premature convergence are unknown. Studies have indicated evidence to

suggest there may be a connection between population size and the probability of

premature convergence (Merkle, 1992; Moed, 1991). Although these studies are not

conclusive, and the data appears to be somewhat problem dependent, there is a direct

relationship between population size and the tradeoff between exploration and exploitation

(Moed, 1991). Convergence upon a local optima can have a profound impact upon
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overall solution quality. A string of unusuailly high fitness, found early in the search

process can quickly dominate the population as a result of the proportional allocation of

the selection operator. In a parallel processing environment, migration strategies can also

accelerate premature convergence by spreading locally optimal strings to other sub-

populations (Merkle, 1992).

In an implementation by Reynolds (1990), the genetic algorithm was modified to

include a dynamic fitness scaling factor. Scaling factors are often used to reduce the

fitness of a string in order to promote the continuation of the search (Buckles, 1990,

Reynolds, 1990). Reynolds justified the use of a scaling factor with the assumption that

no single individual can represent the solution, rather the population must evolve to

contain an entire generation of highly fit strings. LeGrand and Merz (1993) chose a

different selection operator altogether, based on rank rather than fitness. This rank based

approach is believed to reduce the problems associated with a string of unusually high

fitness being assigned a disproportionate amount of the population space.

A variation of genetic algorithms, calld messy genetic algorithms, have been

developed in part to overcome problems of premature convergence (Goldberg, Korb, &

Deb, 1989; Goldberg, 1990; Goldberg, 1991). The messy genetic algorithm is based on

an assumption that the deceptiveness of the problem is bounded. A problem is considered

deceptive if short, low-order building blocks lead to suboptimal higher order building

blocks (Goldberg, 1989). One phase of the messy genetic algorithm, called the primordial

phase, is designed to find the building blocks with the highest fitness values which will

presumably be in the solution. The next phase, called the juxtapositional phase, evaluates

the various combinations of building blocks to determine the combination which yields the

highest solution quality. Messy genetic algorithms are more complicated than simple

genetic algorithms, requiring both more time and more memory. Also, the primordial

phase, which constitutes the majority of the execution time, is inherently non-parallelizable
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on distributed memory architectures; however, approximations of the primordial phase do

exist, which can be parallelized (Merkle, 1992).

2.2.2 Stopping Coenudi . Users of genetic algorithms are forced to specify an

artificial stopping condition corresponding to the desired number of generations to create.

With each successive generation, the solution quality of the population evolves to higher

and higher levels of fitness. There is, however, no obvious point at which the algorithm

completes, or otherwise indicates that no further generations are necessary. Typically, the

user specifies some arbitrary number of generations to perform, after which the final or

best population found is accepted as the solution. It is difficult to estimate the number of

generations required to evolve a solution of the desired quality; consequently, the number

of generations is usually set much higher than the actual number needed. The trade-off

which exists is between solution quality and execution time. An insufficient number of

generations may result in a poor solution if it has not evolved long enough; excess

generations waste computer time by performing evolutionary cycles which do not result in

improved solutions. Since the algorithm is of polynomial order time complexity, the

tradeoff usually favors wasting computer time to ensure an adequate number of

evolutionary cycles are performed. However, even a conservative approximation based on

previous observation does not guarantee an optimal stopping point.

There have been implementations of genetic algorithms which facilitate a simple

automatic stopping condition which allows the algorithm to cycle through the evolutionary

process, creating new generations until a threshold number of cycles have passed in which

no new optimal solution has been found. The implementation by Reynolds (1990)

contained an exit condition which terminated the genetic algorithm after a specified

number of generations where all members of the population maintained a specified fitness

level. In other words, as the algorithm proceeds, the overall fitness of the population

increases, until a point where the population contains only strings of high fitness.
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Furthermore, to maintain a high fitness value for a number of generations, any

recombination's of strings within the population must also be of a high fitness. Assuming

the best solution found so far is being stored and updated throughout the genetic

algorithm, a simple way to facilitate an automatic stopping condition is to allow the

algorithm to cycle through the evolutionary process, creating new generations until a

threshold number of cycles have passed in which no new optimal solution has been found.

LeGrand and Merz (1993) used a multiple exit criteria to terminate the search when any of

the following conditions were met: 100,000 generations without finding a new solution to

replace the previously best solution, variance of the population fitness falls below 0.1, or

the distance between 200 randomly selected pairs falls below a specified amount. The

second and third of these exit criteria, like the strategy used by Reynolds, exploits some

measure of the population convergence to generate a terminating condition.

2.2.3 Precision. A final limitation of genetic algorithms is the lack of precision in

exploiting a minimum state. Often, a genetic algorithm is able to locate the general

location of a local or global minimum, but the nature of the genetic operators make it

difficult to narrow in on the specific minimum of the surface or function (Janikow, 1991).

A typical approach to this problem is to use genetic algorithms to locate the vicinity of

minimum states to limit the search space and then apply a different algorithm, such as a

gradient based algorithm, to perform the fine optimization.

To improve precision, genetic algorithms have been used in conjunction with

gradient-based algorithms to maintain the robustness of genetic algorithms, yet gain the

fine precision .f a directed search algorithm. A study by Janikow and Michalewicz (1990)

implemented " specialized genetic algorithm able to achieve precision by combining a

floating point representation scheme with what was referred to as a dynamic mutation

rate, which decreased with time. The effect of the adjustable mutation rate was a more

localized search with each successive generation. Janikow and Michalewicz argued a
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decreasing rate of mutation causes the population to be searched very locally at later

stages of the evolutionary process. Similarly, Atmar (1990) claimed decreasing the

mutation rate stabilized the genetic information, thus avoiding the disruptive nature of

mutation on an already highly fit string. The results of experiments performed by Janikow

and Mlchalewicz show their specialized genetic algorithm outperforms classical

approaches in terms of both precision and the required number of generations. They also

found the degree of precision achieved by their implementation compared favorably to

more traditional gradient-based approaches.

2.3 Parallel Genetic Algorithms

There are a number of strategies for mapping of genetic algorithms to distributed

memory architectures. Selection of a particular approach should take into consideration

certain features of the target architecture:

"* the time tcomm required for a fixed amount of interprocessor communication,

"* the computation time t c required for a single fitness function evaluation, and

"* the number of available processors.

Of particular importance is the ratio tc/tcomm. Using this ratio, it is possible to determine

the amount of interprocessor communication which may be performed without sacrificing

processor utilization. Typically, tcomm >>tc, implying that very little interprocessor

communication may be performed without impacting execution time.

One strategy, which has very flexible interprocessor communication requirements,

is the "island" model, wherein the population is partitioned into subpopulations (Dorigo,

1993; Gordon, 1993). Each processor executes an independent genetic algorithm

operating on a single subpopulation. No interprocessor communication is required for

fitness evaluation. Various global selection and/or migration strategies may be employed.
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Expeimnental results indicate that tradeoffs exist between solution quality and required

communication time.

A less common strategy is the "farming model, in which the whole population

resides on a single processor (Dorigo, 1993). This processor (the master) applies the

genetic operators to the population, while the remaining processors (the ulaws) perform

the fitness flmction evaluations. As the master processor creates a new individual, it

requests one of the slave processors to evaluate its fitness. After evaluating the fitness of

the population member, the slave returns the fitness to the master. Since O(n)

communications are necessary at every generation, this strategy is best suited for

applications in which ic , tcomm.

Recently, many parallelized versions of several molecular dynamics programs,

including CHARMm, have become available. This offers many different possibilities for

decomposing a GA approach to the structure prediction problem. For example, a single

global population could be executed on the host where the evaluation of fitness for each

population member is executed in parallel on the node processors. This would in effect

speed up the evaluation cycle of the GA. However, one must consider the added

communications required to communicate each population member to the node processors

for every generation.

Parallel implementations of genetic algorithms provide a perfect setting for

encouraging the formation of niches within the search space. The subpopulations present

on each node of a multiprocessor environment provide a natural mechanism to implicitly

search separate niches of the search space, as opposed to explicitly forcing the formation

of niches within a single population in a serial genetic algorithm implementation.

However, some communication may be necessary between nodes in order to prevent a

significant amount of duplication between subpopulations.
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2.4 Summary

Although it has been almost twenty years since genetic algorithms were first

established by John Holland (1975) as a valid technique for searching complex spaces, it

has not been until recently that attention has focused on using genetic algorithms as

general problem solvers for a wide variety of applications. Already genetic algorithms

have been shown to achieve good solutions for olving complex business, science, and

engineering problems. As the variety of applications increasm solving some of the

current limitations, including premature convergence, termination, and precision, becomes

all the more important. Previously, limitations in the performance of genetic algorithms in

a specific application could be compensated by the integration of domain specific

knowledge. However, to allow genetic algorithms to be used as general purpose tools,

the strategies used in the evolution process must be independent of the application

domain.

The parallelization of genetic algorithms potentially offers an attractive means for

achieving near linear speedup using parallel processing. The ability to tailor the

communication strategy of a genetic algorithm to the particular parallel architecture,

allows the time penalty of communications to be minimized. Consequently, the most

natural method of parallel decomposition of the genetic algorithm is to distribute the total

population as a set of subpopulations on each node, where the fitness of each member of

the subpopulation is calculated locally. It is the independence of the subpopulations which

allows a parallel GA to achieve near linear speedup. Even though the evaluation of the

fitness may be parallelizable, it is unlikely that the interprocessor communications required

to perform an evaluation in parallel could be less than the communications between

subpopulations.

As the present understanding of genetic algorithms grows, knowledge of the

effects of genetic operators on solution quality and performance will allow better search
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strategies to be developed. Currently, dynamic operators hold promise for improving the

performance of genetic algorithms by adjusting their influence to reflect the stage of the

evolutionary process. A dynamic selection process may reduce the likelihood of

premature convergence on a locally optimal solution by preventing strings of unusually

high fitness from dominating the population early in the search process. A dynamic

termination condition may eliminate the need to specify an arbitrary number of generations

by gauging the level of convergence of the population. A dynamic mutation rate may

allow more precise solutions by reducing their disruptive influence during the final

optimization stages of the search. Perhaps the biggest benefit of implementing dynamic

operators is that the algorithm may be able to adjust itself to a wide variety of problem

domains, without the intervention of a domain expert.
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III. Analysis of tiw Protein Folding Problem

A protein consists of a sequence of amino acids. Each amino acid is identified by

an attached chemical structure called a sidechain (LeGrand, 1993). The common portion

of an amino acid, to which the side chain or residue is attached, forms the backbone of the

protein molecule (see Figure 4). The sequence of amino acids, linked together by peptide

bonds, forms what is referred to as the primary structure of a protein. Atomic forces and

interactions between bonded atoms cause the primary structure to fold into a three

dimensional structure, known as the tertiary structure. Contained within the tertiary

structure are distinguishable structural components, such as alpha helices or beta sheets,

which are called secondary structures. The final tertiary structure, where all bonded and

non-bonded interactions are stable, is called the molecular conformation. The protein

folding problem can be described as a search for the natural tertiary structure of a protein,

given its primary structure.

HH

Figure 4. A Three Amino Acid ProteinA
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3.1 Background

Proteins are an integral part of everyday life. The function of any protein is largely

determined by its tertiary structure (Chan, 1993; Lengauer, 1993). Fibrous proteins are

found in structural components of our bodies, while membrane proteins mediate the

exchange of materials across cellular boundaries. Enzymes, which control virtually all

biochemical reactions in living cells, are globular proteins. A considerable amount of

research today is directed toward biochemically engineering proteins with desired

fimctional properties. However, in order to accurately predict the functional properties of

a protein, some knowledge of the tertiary structure is required. The development of an

accurate model for predicting the tertiary structures of known protein sequences would

significantly aid biochemists in their search for proteins with specific functional properties.

Current technology provides a virtually automated means of sequencing a protein

to determine its primary structure. Consequently, there are about 50,000 known protein

sequences (Bairoch & Boeckmann, 1991). Conversely, current technology such as X-ray

crystallography and nuclear-magnetic-resonance (NMR), has only been able to

experimentally determine the tertiary structure of about 400 proteins (Bernstein, et. al,

1977). This gap in structural information is expanding due to the Human Genome Project

which at its current rate is doubling the number of known protein sequences every year

(US Congress, No. OTA-BA-373, 1988).

Another indication of the scale of the protein folding problem is the complexity of

the conformational search space. The algorithmic complexity of an optimization problem

depends on two factors--the number of variables in the function to be optimized and the

size of the variable domains. The size of the search space is proportional to the variable

domain, but can also be scaled by a factor associated with the desired precision of the

solution. To analyze a problem in terms of computational complexity, the solution space

must be viewed as a discrete representation, since any computer driven solution must
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represent the search space as a discrete set of points. The overall complexity of finding

the globally optimal solution to a problem then is the time associated with implicitly or

explicitly searching the entire solution space. For complex, non-linear problems, complete

enumeration is the only guaranteed method for determining the globally optimal solution.

Thus, the complexity of a problem containing n variables denoted by x,, x2,...,x. would be

the following product term.

HI-IdiI (where BdiI is the cardinality of the discrete domain for the variable x)
j=1

There exists a relationship between the number of atoms in a molecule and the

degrees of freedom associated with the molecular energy. Each molecule has 3n - 6

degrees of freedom where n is the number of atoms contained in the molecule. This

relationship simply results from assigning the location of each atoms with respect to one of

the molecule's atoms chosen as the reference point. Each protein consists of anywhere

from a few to several thousand amino acids, and each amino acid contains a number of

atoms. The resulting search space in which a conformation can be found is a hyperspace

of dimensionality 3n - 6.

The exponential order of the search space grows much faster than 2" or 3" since

each dimension of the search space can be discretized to some domain of possible values d

resulting in a complexity of Ildj13"4 search space. Fortunately, the bond lengths and bond

angles of a molecule are relatively stable. The principal determinants of the tertiary

structure of a protein are the dihedral angles of the molecule (LeGrand & Merz, 1993).

Consequently the conformational search space of a protein can be reduced to Ildil", where

I1dli is the number of discrete dihedral angles represented, and n is the number of

independently variable dihedral angles. However, even for this simplified problem, a

complete enumeration of the total conformational search space is infeasible. For example,

consider a small problem with only 15 independently variable dihedral angles and a range
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of dihedral angles from 0 to 360 degrees discretized to 20 degree increments. The

resulting search space is of the order of 1018 possible conformations. Even using a

teraflop computer which evaluates one point every clock cycle, a complete enumeration

technique would require over 78 days to search this relatively small search space. Adding

just one more independent variable increases the execution time to almost 4 years. The

complexity of the problem, combined with the ever increasing rate at which protein

sequences are being discovered, drives the need for faster methods of determining the

tertiary structures of known protein sequences. This is the reason the protein folding

problem is included as one of the national grand challenges.

3.2 Current Methods of Structure Prediction

There are currently several approaches to finding the natural, three dimensional

conformation of proteins. Methods of conformational analysis include molecular

dynamics, energy minimization, homology-based, and simplification techniques.

3.21 Molecular Dynamics. Perhaps the most natural approach is to actually

simulate the folding process. This is the approach taken when using molecular dynamics

to model the motion of atoms as an N-body simulation, using Newtonian laws of motion

in response to atomic forces. The limiting factor to the use of molecular dynamics is the

time step required to accurately model the motion of atoms as the protein folds. Thermal

oscillations within a molecule require the simulation time step to be on the order of

femtoseconds (10'"m). However, the complete folding process is on the order of

milliseconds or even seconds (Lengauer, 1993). Current technology limits the simulation

of atomic trajectories to time windows of only a few hundred picoseconds (1012); much

too short to determine the final folded tertiary structure.

3.2.2 Energy Minimization. Energy minimization methods are based on the

observation that physical systems tend toward a minimum energy state. Whether the
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natural conformation of a protein necessarily coincides with the global minimum energy

state of the molecule is still undetermined. Nonetheless, the natural conformation of a

protein must coincide with at least a locally minimum energy state in order to be stable.

Thus, the search for the natural conformation equates to a functional optimization problem

where the function to be minimized is a model of the energy of the protein with a specific

three dimensional structure. The are two major obstacles which energy minimization

techniques must face. The first obstacle is developing an accurate model of the energy

function. An exact model, accounting for all quantum-mechanical effects can be an

expensive calculation with a time complexity as high as 0(n5 ), where n is the number of

atoms in the molecule (Lengauer, 1993). Consequently, semi-empirical calculations are

usually used to approximate the energy function as an O(n2 ) operation. The second major

obstacle is to devise a search algorithm which efficiently samples the conformation search

space, yet avoids the multi-minima problem of becoming trapped in local minima.

There are many approaches to functional optimization (Bilbro, 1991). Differential

algorithms use brute force mathematics to derive the minimum of the function. This

approach, however, only works when the function is differentiable. For non-differentiable

functions, gradient-based or hill-climbing algorithms can be used. A gradient-based

approach uses a greedy type algorithm to direct the search in the most promising

direction. The greedy algorithm operates on the basis of local decisions to guide the

search toward the globally optimal solution. This approach works fine for simpler

functions, but does not perform as well on complex functions containing many minima.

Consequently, a more robust search strategy must be applied to avoid being trapped by

local minima.

The search space for a function consists of the domain of the variables contained in

the function to be optimized. The solution will be the set of n values, where n is the
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number of variables in the function, and fyvI, v2, v3, ..., v.) is either a maximum or

minimum solution depending on the type of optimization being performed.

Solution offtx,, x2, x3, ... , x.) = [v,, v2, V3, ... , v.]

The solution space of the energy function contains many local minima, and is a

fundamental challenge to functional optimization techniques to find the globafly optimal

solution. Various search algorithms, including Monte Carlo optimization, simulated

annealing, and genetic algorithms, have been used to address the multi-minima problem.

3.2.3 Homology-Based Approaches. A different type of approach altogether,

uses a more qualitative foundation. The use of homology to predict the structure of

proteins is based on the premise that molecules with similar primary structures will form

similar tertiary structures (Lengauer, 10)3). Therefore, if the amino acid sequence of a

new protein is found to be similar to that of a protein with known tertiary structure, then

based on analogy, the new protein will possess a similar tertiary structure. The obvious

limitation of this methodology is its inability to extrapolate to new proteins which differ

significantly in their primary structure from any known protein. A variation on this theme

focuses on the secondary structures which make up the overall tertiary structure. The

problem reduces to aligning sequences of a new protein to the sequences of a protein with

known tertiary structure. These sequences are then assumed to correspond to the

secondary structures contained within the known protein. Although this approach allows

the extrapolation to conformations of unique and different proteins, it ignores the

interactions between secondary structures and their effects on the overall tertiary

structure. Also, the sequence alignment problem is a combinatoric problem in itself to find

the best match between two amino acid sequences.

3.2.4 Simplification techniques. Simplifying assumptions have often been used

to model the complex behavior of large problems in a feasible and representative manner.

33



The idea behind simplification is to capture the gross contributions to a complex problem,

and simplify the rest so as to account for the majority of the problems behavior (Lengauer,

1993). A common simplification technique used in conformational analysis is to restrict

the conformation of a protein to a lattice type structure where the backbone-carbon atoms

(C-alpha's) are forced to reside on the vertices of the lattice. The connections between

vertices of the lattice are chosen such that they represent likely conformation angles, thus

greatly reducing the conformational search space. Lattice models usually simplify or even

omit the modeling of the side chains of the amino acids. Despite their many simplifying

assumptions, lattice models have been found to exhibit protein-like behavior when

modeling hydrophilic and hydrophobic behavior. Hydrophilic proteins are polar or

charged and are attracted to water, where as hydrophobic proteins are oil-like and repel

water (Chan, 1993).

3.3 The Semi-Empirical Potential Energy Function

The foundation for using a semi-empirical potential energy function is based on a

tradeoff between numerical accuracy and calculation complexity. The semi-empirical

potential energy function presented here, is derived from extensive experimental analysis

(CHARMm, 1992; Le Grand, 1993). The parameters for the constant terms of the

expression are also experimentally determined. The function takes into account the non-

bonded van der Waals interaction represented by the Lennard-Jones potential, Coulomb's

law, and the interactions between bonded atoms. Note that for non-bonded electrostatic

interaction, the solvent interaction between the atoms of a molecule and the surrounding

environment are not included explicitly.

The molecular energy equation is a non-linear function, whose parameters are

difficult to optimize due to the complex interactions taking place between the atoms of a

molecule which the function models. The simplest term of the energy function includes

34



only the non-bonded interactions term of the equation. The function defined below is the

Lennard-Jones potential which accounts for the van der Waals attraction and repulsion

energy. The last term in the non-bonded interactions function models the electrostatic

attraction and repulsion energy.

= ~12-B1 6 ]
Eo.-bandsd -- j-fl' 1UI + qiqj]

non-bonded ( , ) Cr

The terms Ay and By are empirically determined constants for atoms i andj, and

r#J is the distance between atoms i and j measured in Angstroms. The qi and qj terms

represent the atomic charges of atoms i and j. The total energy from non-bonded

interactions is defined as a summation over all pairs of atoms within the molecule. For

only two atoms, this function has a very deterministic behavior, but as the molecule of

interest becomes more complex, the number of atomic interactions increases polynomially

with each additional atom added to the molecule.

The next step is to add the components of the energy function which represent the

interactions along molecular bonds. This energy is represented by three summation terms

which vary over the bond lengths, bond angles, and the dihedral angles formed by the

molecular bonds. Empirically derived constants are used in the equation and consist of a

leading constant coefficient (K) associated with the types of atoms involved in the

relationship. An equilibrium value (designated by eq) for bond length, bond angle and

dihedral angle is also present and depends upon the types of atoms in the relationship.

The individual terms of the energy function are described below.

Bond length energy = j Kq (rj - )2

bonds

Bond angle energy = F Kg (jk _- )eq )2

angles
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Diedral angleenegy= V. [I+cosQD-Y#,)]
dihedra/s

The total energy of the molecule is equal to the summation of the individual terms

which define the bonded interactions plus the summation of the non-bonded interactions

terms. The total potential energy of a molecule is defined as follows.
E fI= ~ r i :) 2 +Eroottl K (j-req2 +

bonds

angles (k eq

d (j )6 +qqj

non bonded (ruiJ r.jr

3.4 Encoding of the Search Space

As stated previously, the number of independent variables of the energy flnction is

equal to 3n-6, where n is the number of atoms in the molecule. These independent

variables correspond to the bond lengths between bonded pairs of atoms, the bond angles

formed by two pairs of bonded atoms with a common atom forming the vertex of the

angle, and the dihedral or torsion angle defined as the rotation angle along the axial center

(bond) of a chain of four bonded atoms. The bond lengths and bond angles within a

molecule exhibit relatively stable behavior and consequently can be accurately modeled as

a fixed variable based on the atom types involved in the bonded interaction (Schulze-

Kremer, 1993). Tables are available which provide empirically determined values for bond

lengths and bond angles for most combinations of atoms. The dihedral angles constitute

the remaining independent variables. To further refine the problem, attention can be
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focused on the phi, psi, and omega (0, TF, and o) angles (dihedrals along the backbone) of

the protein molecule, and the chi (X) angles of the residue (dihedrals determining the

orientation of the sidechains). The remaining dihedral angles contained within the

chemical structures of the sidechains are held fixed.

The solution space for the potential energy function is an n-dimensional

hyperspace where n is the number of independently variable dihedral angles. The surface

of the energy function is characterized by many local minima, resulting in a function which

is difficult to optimize (Bilbro & Snyder, 1991). A simple gradient based search algorithm

would likely become trapped in a local minima, unable to proceed to find the globally

optimal solution. Stochastic based search algorithms such as Monte Carlo, simulated

annealing, and genetic algorithms have been shown to successfuily avoid the multi-minima

problem of becoming trapped in a local minima. Each of these search techniques are able

to use the potential energy function to evaluate points in the search space corresponding

to a specific conformation of the molecular structure being minimized. The search space

consists of an encoding of the independent variables necessary to fully specify the three

dimensional structure of the protein.

3.4.1 A Genetic Algoritkhm Encoding Scheme- A method which can be used to

search for the maximum or minimum of a complex function, using genetic algorithms

starts with constructing an encoding of the search space as a character string. This

involves two decisions, the cardinality of the alphabet used as the characters, c, and the

length of the string, I. Both of these decisions will affect the overall size of the search

space since the size of the search space is defined by c'. For functional optimization, the

most common string representation uses a binary alphabet to define a string of length 1,

where I is determined by the size of the largest possible solution for each of the variables

in the function to be optimized. For example, a function of two integer variables with a

domain of 0 to 100 could be represented by a string of length 14, the first seven of which
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would represent the binary encoding of one variable, and the second half of the string

would represent the other variable. Although this string would actually represent a

possible solution space of 0 to 127 for both of the variables, the simplicity of the string

representation, and the relatively small string length make this the most obvious and

practical choice of string length and alphabet. However, as the size and complexity of the

fimction to be optimized increases, a more efficient means of representing the search space

may be necessary.

The grain of the search space is another consideration which may influence the

effectiveness of a representation scheme. For example, if a function contains

trigonometric components, it may only be feasible for solutions to exist on increments of X

radians, even though the function may be defined for all real numbers. The grain of the

string representation is very specific to the problem, and may require a significant

understanding of the problem in order to reduce the grain of the representation. The

benefit, however, of reducing the granularity of the encoded string, is a much smaller

search space.

Often, the binary alphabet is chosen since the genetic operators necessary for

crossover and mutation are easy to implement for binary strings. Also, the conversion

procedure to convert the encoded representation into the actual solution format in order

to evaluate the objective function should also be efficient since it is executed often.

Experiments by Janikow (1990), using a floating point string representation, indicate that

non-binary strings are also capable of providing good results.
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IV E"perimentd Desi8n and mlkmeraena

The design of any experiment requires a balance between planning and a constant

awareress of the goal of the research effort. The most carefidly laid out experitmnt is

meaningles unless it is able to substantiate the findamental hypothesis of the experiment.

Consequently, an experiment should be designed to provide some quantifiable measure

from which to perform statistical analysis and draw conclusions (Montgomery, 1976).

The following section discusses the details of the experimental design; the

implementation and validation of the molecular energy model, the integration of the model

into existing software, and the program execution on various hardware architectures. The

section concludes with a detailed presentation of the methodology used to evaluate the

performance of this GA approach to the conformtional analysis of proteins.

The approach used to exper ntal evaluate the performance of GA's for

conformational analysis involves a three step process. The first step is to develop an

accurate model of the molecular energy. The next step is to integrate the model into the

GAK Finally, the last step is to design an experiment which evaluates the performance of

GA's over a variety of test cases.

4.1 Implementation of Molecular Energy Model

The molecular energy function is an empirical calculation of the molecule's energy

based on the geometry between various sets of atoms within the molecule. Consequently,

a data structure which captures the three dimensional structure of the molecule is required

in order to evaluate this function. The empirical energy function must also have access to
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constant parameters which are determined by the types of atoms involved in the energy

term. Finally, a procedure must be devised to validate the energy model.

4.1.1 "itial•tin ofD&ta S*bcm A systems approach to design startswith

an analysis of the inputs and outputs of a process to determine its requirements. The input

files used in this research are generated by a software package called QUANTA. The

primary input to the energy model of a particular protein is the Z-matrix representation of

the protein. A Z-matrix encodes the structural information necessary to filly define the 3-

dimensional position of each atom within the molecule. The method in which this

structural information is encoded is by defining each atom's position in terms of its bond

length, bond angle, and dihedral angle with respect to three previously specified atoms.

Generating a Z-matrix with QUANTA produces an output file with the following format

for each line of the file.

[aom typeJ (bond Iengthl [fiag] [bond angle] (11"1] [dihedral] (ftlg] [atomnj] l(atomk [tIoml] [charge]

Z-matrix Format

The Z-matrix consists of a sequential listing of all the atoms present in the

molecule. Each line of the Z-matrix corresponds to a specific atom number. The atom

type is simply the chemical symbol for the type of atom present. The bond length is the

distance between the present atom and the atom corresponding to the number in the field

atomj. The bond angle is defined as the angle formed between the present atom, atomi,

and atom k. The dihedral angle is the twist or torsion angle along the central bond of a

chain of four atoms. Thus, the dihedral angle is defined as the torsion angle along the axis

of the middle bond formed between the present atom, atomj, atom_k, and atom._. The

flag fields present in the Z-matrix serve the purpose of identifying structural parameters as

either fixed or independently variable. Although the Z-matrix contains a field for the
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charge of each atom, this field is not used. Instead, QUANTA generates a separate file, an

rtf file, which contains more specific atom type information as well as the atomic charges

corresponding to each atom of the molecule.

N 0.00000 0 0.00000 0 0.00000 0 0 0 0 0.000
C 1.45300 0 0.00000 0 0.00000 0 1 0 0 0.000
C 1.52877 0 107.5=007 0 0.00000 0 2 1 0 0.000
C 1.49994 0 111.60606 0 -119.97103 1 3 2 1 0.000
C 1.38714 0 120.03769 0 89.96887 1 4 3 2 0.000

Example lines ftom a Z-matrix

The above example shows the first five lines extracted from a Z-matrix for

[Met]-Enkephalin. From this small example the following information can be interpreted:

the fifth atom is a carbon atom, which is 1.38714 Angstroms distant from the fourth atom

of the molecule, and forms a 120.03769 degree angle between itself the fourth and the

third atom, where the fourth atom lies on the vertex of the angle. Likewise, there is a

torsion angle of 89.96887 along the bond between the fourth and third atom with respect

to the chain of atoms extending from the fifth to the second atom. A "N" in the flag field is

used to indicate an independently variable parameter, while a "0" indicates that the

parameter is held fixed. The flags in the example indicate the dihedral angles for the

fourth and fifth atoms are independent variables.

In three dimensional Cartesian space, the first atom of the Z-matrix may be

arbitrarily considered to be at the origin. The second atom may be considered to be on a

coordinate axis, such that the bond between the first and second atoms lies on either the x,

y, or z axis. The position of the third atom may be considered such that the plane defined

by two unit vectors along the bonds to the two previous atoms lies in either the xy, yz, or

the xz plane. The Cartesian coordinates of the fourth atom, as well as any subsequent

atom, can then be calculated given the distance, bond angle, and dihedral angle between

that atom and the three previously specified atomsto which it is bonded. Thus, the process

of calculating the Cartesian coordinates for all atoms within the molecule requires the
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initial determination of the first three atoms as reference points, and then iteratively

calculating the position of the next atom with respect to the previous three atoms to which

it is bonded. This process includes rotational and translational transformations of the

Cartesian coordinates of the previous three atoms, aligning them with the origin, in order

to simplify the geometry of the problem. The Cartesian coordinates corresponding to the

atoms listed in the above example are listed as follows in what is called a PDB file format.

Observe that the first bond is placed along the z axis and the bond angle formed by the

first three atoms is placed in the xz plane. Also note the atom types have changed to a

more explicit notation which was read in from another file called the RTF file.

Atom Type x y z
ATOM NT 0.000 0.000 0.000
ATOM CT 0.000 0.000 1.453
ATOM CT 1.457 0.000 1.915
ATOM C6R 1.773 1 I0 2.746
ATOM CWR 2.233 2.367 2.139

Example of PDB File Format

The calculation of the Cartesian coordinates of all atoms within the molecule is

necessary for every evaluation of the energy function corresponding to a particular

conformation. The Cartesian coordinates are necessary to calculate the atomic distances

between atoms for the non-bonded term of the energy function, as well as to calculate

dependent bond angles and dihedral angles which are not explicitly represented in the

Z-matrix.

Using the systems approach to design the data structure for the molecular energy

model, it follows that two major categories of information must be represented. The input

to the model consists of both structural information to represent the three dimensional

conformation of the molecule, as well as parameter information required to calculate the

components of the energy function. The required output is the Cartesian coordinates of

each of the atoms of the molecule.

42



The first requirement is to design a data structure which retains the structural

information present in the Z-matrix. Additionally, the data structure must include the

Cartesian coordinates of each atom. The energy fumction requires access to constant

parameters for each bonded term of the energy function. These parameters are

determined by the specific combination of atom types in the bonded relationship. The

number of bonded relationships which exist in a molecule includes those explicitly

represented in the Z-matrix, as well as those bonded relationships which can be implicitly

determined from the Z-matrix. The number of bonded relationships is roughly of order n,

where n is the number of atoms present in the molecule. The number of non-bonded atom

pairs is approximately n(n-1)/2. The number of atoms in the molecule is known a priori;

however, the number of bonded and non-bonded interaction terms depend upon the

structural information present in the Z-matrix. Consequently, a two level approach to the

data structure design was implemented. The first level of information pertained to the

specific information corresponding to each individual atom. The next level of information

pertained to the specific information required to evaluate each component of the energy

function and was generated from the first level of information. This approach resulted in

two distinct data structures:

typedef struct
{

char type of atom[ATOMNAMELENGTH]; /* atom type - C, N, etc */
double charge; /* atomic charge of atom */
double x, y, z; /* Cartesian coordinates of atom */
int atomj; /* atom number of direct parents */
double bondlength; /* fixed bond length between i & j */
int bond_group; /* 0-Fixed, 1-Independent */
int atomk; /* third atom defining bond angle
double bondangle; /* fixed bond angle between i, j & k */
int anglegroup; /* O=Fixed, 1-Independent *1
int atom_1; /* fourth atom forming dihedral
double dihedralangle; /* independent dihedral angle
int dihedralgroup; /* O=Fixed, 1=Independent *1

} ATOMTYPE;
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typedef struct group

int i,
int Ji
int k;
int 1;
double k_parm; /* constant parameter */
double bodanglephi; /* bond, angle, or phase parameter */
int norphase; /* n or phase parameter */
struct group *next

} GROUPLIST;

The first data structure resembles the contents of the Z-matrix, with the addition of

fields to hold the Cartesian coordinates of each atom. The entire molecule is represented

as an array of records of type ATOM_TYPE. Any atom specific information can then be

referenced by atom number and field, as in atom[i].field. The second data structure is a

dynamic data structure which contains the atom numbers and constant parameters

associated with a bonded or non-bonded interaction term of the energy function. The

linked list structure can contain as many records as there are bonded and non-bonded

interactions. Separate lists were created for each component of the energy function, as

well as whether the structural geometry of the bond relationship is fixed, dependent, or

independently variable. This resulted in ten separate linked lists, which were instantiated

as follows:

GROUPLIST *Nonbond;
GROUP_LIST *Fixedbond;
GROUPLIST *Dependbond;
GROUPLIST *Indep_bond;
GROUPLIST *Fixed angle;
GROUPLIST *Dependangle;
GROUPLIST *Indepangle;
GROUP LIST *Fixeddihedral;
GROUPLIST *Depend dihedral;
GROUPLIST *Indep_dihedral;

The first step in imtialzig the data structures begins by reading in the Z-matrix as

an array of atoms of type ATOM_TYPE. After reading the Z-matrix into the appropriate

fields of the array of records, a function called create_groups is executed which builds the
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lists of atoms with bonded and non-bonded interactions between them. This is done by

systematically comparing the indices of atoms to which each atom is bonded. All bonded

relationships identified in the Z-matrix are either independently variable or fixed,

depending on the flag field for each variable. All bonded relationships which exist, but are

not explicitly represented in the Z-matrix are identified and added to the dependent

variable lists and there values are determined by the values of the dependent and

independent variables. Non-bonded atom pairs are those pairs of atoms which are not

involved in a bond, bond angle, or dihedral relationship with each other. After each of the

ten group lists are created, the parameters associated with the atom types and the term of

the energy function, are found in a parameter file and stored in the list structure. This

allows the parameters from the parameter file to be read only once, and makes all required

parameters for each evaluation of the energy function available from this point forward.

4.1.2 Parameter Specifications File. The constant parameters associated with

the various components of the energy function are constants which have been

experimentally derived from actual observed data. The source of parameters for this

research is the parameter file used by another software package called CHARMm,

specifically version 22.0, last updated 92/10/05. This file contains the constant parameters

associated with bond lengths, bond angles, dihedral angles, and non-bonded pairs. The

format of the file varies according to the number of atoms involved in the interaction;

however, the general format is as follows.

[atomjtype II [atormtype 2] [atomjtype 3] [atom-type 41 (1st parameter] [2nd parameter]

Parameter File Format

The third and fourth atom types are only present for bond angle and dihedral angle

parameters, respectively. The parameter file is organized into subsections, with headings
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separating the different types of parameters according to the term of the energy function

to which they corresponded. The order of the groups starts with the parameters for the

bond energy term of the energy function. There are two empirical parameters for bond

energy; the leading constant term, and equilibrium radius, both of which depend upon the

types of atoms in the bonded pair. The next set of parameters in the parameter file are

those associated with bond angle energy. Again there are two parameters; the first is the

leading constant term, and the second is the equilibrium bond angle. The third set of

parameters are those associated with the dihedral angle energy term of the energy

function, and include a leading constant term and an equilibrium dihedral angle. The

parameters for bond and dihedral angles depend upon the types and the order of the three

and four atoms, respectively, involved in the interaction. Because of the combinatoric

nature of ordered relations, many of the dihedral parameters are only specified by specific

second and third atom types, in order to reduce the size of the parameter file. Generic

atom type positions are identified in the parameter file with a single capital "X" placed in

the field normally used for the atom type.

The next set of parameters listed in the parameter file, after the dihedral

parameters, are parameters associated with improper angle energy. The improper angle

energy is another component of the energy function which can be modeled empirically;

however, this term is not included in this research implementation because of its relatively

small contribution, and also to facilitate comparisons to other published results that did not

model the improper angle energy term. Consequently, this section of the parameter file is

skipped to reach the final set of parameters used; the parameters associated with the non-

bonded interaction term of the energy function. Unlike the other parameters so far, which

correspond directly to terms within the energy function, the non-bonded section of the

parameter file provides the values for Emin and Rmin for each individual atom type. The

corresponding parameter values for the non-bonded term of the energy function are
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S.

derived from the following relationships, where i and j are the numbers corresponding to

the pair of atoms involved in the non-bonded interaction.

Ejj = Emi, + Emin
RY = Rmin, + Rminj

Ay = Ry(Ey )2

By = Jj(2E

Locating every required parameter by directly searching the parameter file would

require an extensive amount of I/0 time. Consequently, in order to minimize the amount

of I/0 used to read the data from the parameter file, the first set of parameters is read into

an array structure, which is then used during the search process to locate the appropriate

parameters according to the atom types present. After all the required parameters

associated with that section of the parameter file are located and stored in the group list

structure, the array of parameters is cleared and the next set of parameters are read in

from the parameter file. This proces: continues until all parameters required to evaluate

the energy function are stored within the group list structure; thus allowing the parameter

file to be closed since it is no longer needed.

4.L3 Implementation of Emprical Energy Equation. The implementation of

the empirical energy function follows a functional programming paradigm where each

component of the energy function is implemented as a separate function. This facilitates a

summation operation which is performed for each of the individual groups lists

corresponding to the separate terms of the energy function, as well as allowing analysis of

the individual contribution of each component of the energy function. Since all the

parameters for each of the energy terms are stored in the group list structure, the
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functional implementation of each term of the energy function can be coded so that the

constants and variables are passed as parameters to the function. The following pseudo

code demonstrates the functional programming format used for the individual terms of the

energy function.

energy_component(K1, K2, x)
{

contribution = f(K1, K2, x)
return (contribution)I

The constants KI and K2 correspond to the leading coefficient and the equilibrium

constant found in the bond, bond angle, and dihedral angle energy terms of the energy

function. The individual contribution of this bonded interaction is equal to a function of

KI, K2, and the variable x, which is either the bond length, bond angle or the dihedral

angle corresponding to the geometry of the group of atoms in the specific conformation

being analyzed.

The summation of the total energy is accomplished by indexing through each of the

group fists, calling the appropriate energy component function and summing over all terms

of the energy function. The following pseudo code demonstrates the summation of the

total energy over each component of the energy function.

totalenergy = 0.0
for i = 1 to numberof_grouplists

indexPtr = group_list(i]
energy_contribution = 0.0
while (indexPtr * NULL)

energy contribution = energy_contribution +
energycomponent (indexPtr->K1, indexPtr->K2, indexPtr->x)

indexPtr = indexPtr->next
)
totalenergy = totalenergy + energycontribution
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Although the above pseudo code does demonstrate the general process of how the

energy function is evaluated, the actual implementation differs for several reasons. First,

the function called to evaluate the individual energy component depends upon the type of

group list being evaluated, since each group list is associated with a specific term of the

energy function. Second, the source of the variable x, also depends upon the type of

group list. Fixed variable group lists retrieve the variable x from the original data stored in

the array of records structure initialized from the Z-matnx. Independent variable group

lists acquire a candidate solution for x from the encoded string representation of the GA.

Finally, dependent variable group lists must call an intermediate function to determine the

variable x from the Cartesian coordinates of the individual atoms. Similarly, the evaluation

of the non-bonded energy requires the intermediate calculation of the distance between

two non-bonded atoms, in order to calculate the individual energy contribution of the pair

of atoms.

4.1.4 Validation of the Energy Model. The process used to validate the accuracy

of this implementation of the energy model involved calculating the initial energy of a test

molecule, and comparing this energy to that which is obtained using the CHARMm

software package for the same molecule. Both models used the same Z-matrix from

which to derive the geometric information relating to the specific conformation of the test

molecule. The energy model used by CHARMm is also empirically based, using the same

parameter file and the same equations for the individual energy components. The

CHARMm model, however, does model other energy components which are not included

in the GA model, such as the improper angle energy. CHARMm does have the capability

to report the individual contributions of each term of the energy function, consequently

allowing a direct comparison between the energies found with the GA energy model and

the energies determined by CHARMm. Since the CHARMm software package is widely

accepted as an accurate model of molecular energy, the GA model was considered to be
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sufficiently validated when its calculated energy contributions agreed with those reported

by CHARMm for the same molecule.

4.2 Integration of the Energy Model Into the Genetic Agorithm

The energy model serves as the GA's fitness function to evaluate the fitness of

population members, thus determining their survival rate into the next generation. The

interface between the GA and the energy model is through the function called eval, which

evaluates the fitness of each member of the population. Considering the energy for each

population member must be calculated for each generation, several steps were taken to

maximize the efficiency of the energy calculation. Finally, the clean interface between the

GA and the energy model allowed the integration of the model into several different

versions of the GAK

4.2.1 Ealnation of Fitne. With each generation, the fitmess of each population

member is determined by calling the eval function. The call to the firtion eval passes a

population string as its argument. It is the encoding of the GA string which provides the

interface between the energy model and the GA, since each string corresponds to a unique

spatial conformation of the molecule being modeled. The string representation is decoded

into the independent variables within the molecule, such as bond lengths, bond angles, or

dihedral angles. After all independent variables are decoded, and in conjunction with the

structural information retained from the Z-matrix, the Cartesian coordinates of each atom

can be determined. The calculation of the molecular energy follows by indexing through

the previously defined group lists, summing up all of the individual components of energy

to arrive at the total energy. This total energy corresponds to the specific conformation

defined by the string representation and is returned as a value of fitness.

The GA uses the returned energy value directly to proportionally allocate strings

into the next generation. In order to evolve solutions which minimize the energy of the
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molecule, the GA must allocate more copies in future generations to solutions with high

fitness levels (low energy values). With each successive generation, the solutions

correspond to three dimensional conformations with lower and lower energies. After a

predefined number of fitness evaluations, the best solution found so far is taken as the final

solution, and execution is halted. To evaluate the quality of the final solution, the

corresponding Cartesian coordinates of each of the atoms are printed to a file in a

particular format which can then be read by the QUANTA software package which

renders an image of the molecule on the screen for examination.

4.2.2 Efficiency Considerations. Since the execution of the genetic algorithm is

dominated be the time required to evaluate the fitness of each string for every generation,

every consideration should be given to maximizing the efficiency of the calculation of the

molecular energy. One way to accomplish this would be to eliminate any unnecessarily

redundant calculations. For most energy minimization problems, only a subset of the

dihedral angles are allowed to vary independently. The bond lengths, bond angles, and the

remaining dihedral angles are held fixed. Consequently, the energy associated with these

fixed interactions can be calculated once and stored, rather than recalculating it for every

evaluation. This was accomplished by implementing a global variable called fixedenergy,

which stores the sun, J.f all the fixed energies calculated during initialization. The total

energy is for each evaluation starts with the fixed energy, and then proceeds to add the

contributions from the independently variable energy terms, the dependently variable

terms, and the non-bonded interaction term which is dependent on the global structure.

Another efficiency consideration is the availability of all the parameters necessary

to evaluate the empirical energy function. In order to avoid searching for the parameters

with each evaluation, all necessary parameters are identified during the initialization phase

and stored in a record structure of the atom group lists. The parameter file is only

searched once, and all subsequent references to parameters can be made directly.

51



Consequently, the evaluation of the total energy can proceed by stepping through each

atom group fist, and calling the appropriate energy component function with the

parameters passed as arguments.
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V. Rem/s andEwualm

In order to evaluate the performance of GA's as a co6omiaional analysis tool, the

developed potential energy model is integrated into both a sequential and a parallel

implementation of a simple genetic algorithm based on GENESIS (Greiistette, 1986),

and tested on a real protein. The purpose of the experiment was two fold: fim to

determine whether or not GA's are an effective search technique for m molecular

energies for conformational analysis of proteins, and also to assess the scalability of GA's

on parallel computer architectures. To accomplish the first objective, the GA is shown to

effectively minimize the energy of the test problem. The second objective is accomplished

by demonstrating near linear speedup of a parallel i n tin of the GA with no

corresponding degradation in solution quality.

5.1 Sequential Woe-mentatlon Test Results

5.1.1 Deydepment of Test Set. The test problem chosen is the molecule

[Met]-Enkephalin, which is a five residue peptide. This molecule was chosen both for its

small size and because it has a known conformational structure, including a beta turn. The

bond lengths and bond angles were held fixed, while the dihedral angles along the

backbone (four each of *, w,, and w angles) and 9 sidechain dihedral angles (x angles) of

the protein where allowed to vary independently, for a total of 21 independent variables.

A resolution of approximately 0.35 degree increments was achieved by encoding 10 binary

characters for each independent variable that resulted in a total string length of 210 bits for

each member of the population of strings.
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S.1.2 Erperinensal Procedure. The sequential implementation is performed on a

Sparc Station IL executing in the background. Because of the long execution times, up to

14 hours per run, the number of experiments performed was limited to ten individual runs.

Various population sizes and mutation rates were performed in order to gain empirical

support for choosing appropriate GA parameters. The best run was evaluated on the basis

of final solution quality and also upon the population convergence evidenced by the

degradation in population variance.

The effect of population size on convergence is demonstrated in Figures 5-8. With

a relatively small population size of 50, the GA converges to a single solution after 25,000

fitness evaluations. The convergence is more evident in Figures 6 and 7 where the

variance is shown to decrease toward zero and the average population fitness becomes

equal to the best fitness found. Increasing the population size provides more genetic

material, allowing the GA to continue to explore the conformational search space. This

continued exploration is demonstrated in Figure 8, where the population does not

converge but rather the algorithm stops when reaching the predefined maximum number

of 500,000 fitness evaluations.

54



Population Size = 50
Mutation Rate = 0.00001 [- - ]

--.- Average

I vI.OE+t 8

1.OOE+I6

ii. I.00E.121.OOE+10

_ 1.00E+08

1.00E+02
1.OOE.00

0 6000 10000 15000 20000 260 30000
Total Trials

Figure 5. Convergence After 25,000 Evaluations

Population Size = 100
Mutation Rate 0.00001 -4 Best

M- - Average
-&---Varlance

1.OOE+19
1.00E + 161. 0 + 3

I1.OOE+13
cu- I.OOE+I0

I 1.00E407

a. 1.OOE+01,

1.00E-02 p i i - -
0 20000 40000 60000 80000 100000 120000 140000

Total Trials

Figure 6. Convergence After 120,000 Evaluations

55



Population Size = 200
Mutation Rate =0.00001 --- Bs

... Averape

I .00E+20.
I .00E+17

SI .00E.14

1.00E-07
0 100000 200000 300000 400000 500000

Total Trials

Figure 7. Convergence Just Before Reaching 500,000 Evaluations

Population Size = 500
Mutation Rate =0.00001 BestW

... Average
-Variance

I .00E.20
I .00E41S*.OE1

c .00E414
LL 1.00E+12

I .00E.10
1.00E.08 ........... ............

& .00E+06 ~ ~
I .00E+04
1.OOE.002---------------------- ---
1.002.00 II

0 100000 200000 300000 400000 600000

Total Trials

Figure 8. Maintains Population Diversity Till Reaching the Stopping Criteria

56



The effectiveness of the GA conformational search in terms of solution quality can

be seen in Figure 9, which plots the best solution found so far during execution for each of

the various population sizes. It is interesting to note that the results from the population

size of 200 outperforms the results achieved using a larger population size of 500. It is

possible, however, that the population of 500 would have been able to find a better

solution, had it been allowed to continue to evolve to the point of convergence. The

amount of time allowed for a GA to execute, represents the tradeoff between exploration

and exploitation.

Best Performance for Various Population Sizes
(Mutation Rate = 0.00001)

8.OOE+02 Pop = 500
7.00E+02--- Pop 200

S..... Pop= =0
7.OOE+02 Pop -

5.OOE+02 --" "'"
U. 4.OOE+02

2.OOE+02 -. -2.00E+02 •\•

1.OOE+02 -I I
OE 100000 200000 300000 400000 5000000.00E+00

Total Trials

Figure 9. Relative Performance of Various Population Sizes

51.3 Evaluation of Performance. For the sequential implementation, the

resulting conformation could be directly compared to the accepted known conformational

structure. The comparison is performed by comparing the corresponding backbone and
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SBon ). NIL LIJ Elec. Total
Initial 42.5 5.2 13.8 71.0 -35.5 97
Initial Minimized 0.4 2.4 6.2 -10.4 -34.7 -36
Best GA 0.4 2.6 6.1 -11.6 -36.7 -39

Table 1. Potential Energy Values

sidechain dihedral angles. The lowest energy structure generated from the GA application

has been further minimized, using a steepest descent conjugate gradient local minimizer.

This resulting structure is then compared to the global energy minimum structure of

[Met]-Enkephalin by direct comparison of the backbone and X dihedral angles.

Table I presents the energy values (kcal/mol) for the initial structure, the initial

minimized structure, and the best GA result (after minimization). Table 2 provides a

comparison between the various backbone dihedral angles (degrees) for the same three

methods, plus the results reported by Nayeem, Vila, and Scheraga, (1991).

It is interesting to point out that although the energy has not changed substantially

for using the GA compared to locally minimizing the initial structure, the conformational

space has been searched. Indeed, for the locally minimized structure the 4, W angles

remain about 180 deg (4: mean = -164; std = 32; W: mean = 170; std = 11), while for GA

structure the beta-bend is, in part, being reproduced. These results are still being refined,

and also note that in Nayeem's (1991) article a relatively wide range of results has been

previously reported.

5.2 Parallel Implementation Test Results

5.2.1 Development of Test Problem. Similar to the test problem chosen for the

sequential implementation, the molecule [Met]-Enkephalin, was again chosen for its small

size and known conformational structure. However, note that in this case the non-polar

hydrogen atoms were not explicitly included. All bond lengths and bond angles were
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again held fixed, while the same dihedral angles along the backbone and sidechain dihedral

angles of the protein were allowed to vary independently. The same angle resolution was

also used, resulting in the same total string length of 210 bits for each member of the

population of strings.

Dihedra Anl e
Residue Method j jj I X1 i [ X4I

Tyr Initial 180 180 180 152 120 90
Tyr Minimized 169 -164 -179 174 62 87
Tyr GA -59 -156 -179 -179 64 89
Tyr Nayeem -86 156 -177 -173 79 -166
Gly Initial 180 180 180
Gly Minimized 178 -134 180
Gly GA -173 82 180
Gly Nayeem -154 83 169
Gly Initial 180 180 180
Gly Minimized -177 176 -179
Gly GA -87 84 179
Gly Nayeem 84 -74 -170 1
Phe Initial 180 180 180 -58 120
Phe Minimized 159 -133 178 -80 177
Phe GA 163 -134 -176 -75 177
Phe Nayeem -137 19 -174 59 -85 1
Met Initial 180 180 180 -58 180 180 180
Met Minimized 160 160 180 79 176 -175 180
Met GA -158 -158 180 80 -177 176 179
Met Nayeem -164 160 -180 53 175 -180 -59

Table 2. Comparison of Dihedral Angles for Various Methods

The lowest energy structure generated from the GA application has been further

minimized, using a steepest descent conjugate gradient local minimizer. This resulting

structure is then compared to the global energy minimum structure of ,qMet]-Enkephalin

by direct comparison of the backbone and X dihedral angles.
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5.22 E4ermental Procedure. Preliminary testing was performed on both a

serial and a parallel implementation of the GA in order to gain insight into the proper GA

settings for mutation rates and population sizes for this particular application. The

mutation operator was implemented as a bitwise probability; therefore, in order to achieve

a desired probability of changing a string structure, the bitwise mutation rate must

determined by the following relationship. The bitwise mutation rate is designated Pm and

the probability of mutation for a string structure is designated as PM, where the length of

the string is 1. The mutation rate chosen for this experiment was 0.00001, which

corresponds to a 0.21% probability of mutating a string structure.
PM= I -(I -pro)

The GA was executed on an Intel iPSC/860 with 64 processor elements. In order

to be able to scale up to a total of 32 processors, a total population size of 640 was chosen

such that the subpopulation size on each node would never become less than 20

individuals per processor. This ensured that there would be sufficient genetic material to

perform useful search from local crossover and mutation. in order to evaluate the

scalability of the GA, the test problem was executed on various partition sizes ranging

from I to 32 nodes, by powers of 2.

5.2.3 Evaluation of Performance. Both execution time and solution quality were

averaged over 5 runs for each partition size. The results show that the GA achieved near

linear speedup as the number of processors was increased (Figure 10). In addition, there

was no corresponding loss of solution quality as the subpopulation size on each node was

reduced by a factor of n/p, where n is the total population size and p is the number of

processors (Figure 11).
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P7. Concluions and Future Research

The genetic algorithm offers many potential advantages over other existing

conformational analysis techniques. It has been demonstrated that a GA implementation,

using an empirical energy model as the fitness function, is able to optimize independently

variable dihedral angles to minimize the energy of the peptide [Met]-Enkephalin.

Although this test problem is relatively small, optimizing over only 21 independently

varying dihedral angles, the GA is expected to scale well to larger problems. Also,

conformational analysis on an entire molecule is not always necessary. Often, only small

segments of a large protein may be of interest in order to predict local secondary structure

formations.

GA's are probabilistic algorithms and thus can not guarantee the globally minimal

solution. However, combining the GA with more traditional local optimization techniques

may prove to be a useful conformational analysis technique. The GA could be used to

explore large search spaces to locate areas of potential interest, and then a simple hill-

climbing algorithm could be used to perform local optimizations in those areas. This

approach holds particular promise in the application of conformational analysis, where the

GA could be used to locate a population of good candidate solutions which biochemists

could then use as a starting point to apply more domain specific knowledge in order to

optimize the candidate solutions.

One potentially limiting factor to the scalability of a GA applied to the protein

folding problem is the minimum number of population members necessary on each

processor in order to perform useful search through crossover. The results reported

previously scale very well up to 32 processors; however, increasing the number of
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processors would reduce the subpopulation size and eventually may lead to problems of

premature convergence as the subpopulation size decreases to an insufficient level.

Consequently, as larger and larger parallel platforms become available, the question arises

as to what is a sufficient subpopulation size for performing local crossover. This question

should be addressed through additional research with larger proteins and larger platforms.

Since the evaluation function is of 0(n2), where n is the number of atoms in the molecule,

it may be worthwhile to investigate the use of a combined approach of local and global

crossover in order to scale up to a larger numbers of processors without correspondingly

increasing the total population size.

Guidance for future efforts should emphasize:

"* Dynamically controlled parameters

"* Improved parallel communications strategies

"* Optimization of code for evaluation function

"* Scale algorithm to larger parallel platforms

"* Scale application to larger problem sizes

Future efforts should be directed towards improving the effectiveness of the GA as

a function optimizer. The performance of GAs has been shown to be sensitive to

parameter settings. The implementation of dynamically controlled genetic operators offer

the potential of fine tuning the parameter settings of the GA during execution rather than

being held fixed. Continued efforts to optimize the code should be made in order to

reduce execution time. Refinements to the parallel decomposition and communications

strategies used in the parallel implementation of the genetic algorithm should also decrease

execution time, allowing the GA to be applied to larger problem sizes. Other parallel

decomposition strategies should be investigated when the number of parallel processors

approaches the total population size. It may become necessary to develop a hybrid type
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island model where a subpopulation exists on a partition of the processors rather than on

an individual processor.
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